Making Clothes 5: Wool and Silk

This post is a part of our Making Clothes series.

Animal fibers come most obviously in the shape of various hairs, including wool. Also silk both from spiders and moths is used in various textiles. Feathers and down are sometimes included in animal fibers as well, but since their application tends to be incidental apart from decorative uses or as pillow or blanket fill, we will skip them here. (Sea silk is another rare but intriguing fiber we’ll skip.)

Sheep are probably the most common source for animal fibers for clothing use. Other common sources of animal hairs are goat (e.g. cashmere) and camelids (camel, llama, and alpaca), but even rabbit, cow, pig, or horse hair textiles exist. In Egypt, for example, extant fragments at the Workmen’s Village at Tel el Amarna (dated around 1350 BCE) included among others a small amount of wool textiles and two goat’s hair samples.

This post will first discuss sheep wool and then move on to moth silk.

WOOL

Wool is very common in pre-modern clothing. Sheep are not only easy to keep, they also provide different kinds of useful materials—wool, leather, bone and horn, gut, sinew, etc.—in addition to meat and milk.

Origins of Wool Production

Sheep grow their fleece out year round, and it serves them as insulation against cold, wet, and the hazards of the wild. (Note that fleece was originally just another name for sheep wool or certain woolly textiles; it was only after the introduction of synthetic fibers that polyester fleeces have become a thing).

Sheep were domesticated thousands of years before common era, most probably in multiple locations and/or episodes. The regions where domestication happened have been estimated to range from the Fertile Crescent to a large area from central Turkey to northwest Iran or to the Aralo-Caspian steppe. It looks like sedentary communities were practicing sheep management there already by 10000-8000 BCE. Following 7000 BCE or so, along with other elements of Neolithic life, humans spread domesticated sheep to neighboring regions, including Europe, northern Africa, and central Asia.

A sheep type bred to produce more wool came to Europe from the Near East or southwest Asia, along with the technology for wool processing during the 4th and 3rd millennia BCE. Around the same time, by 4000 BCE or thereabouts, camelids (camel, llama, alpaca, vicuña) were domesticated in the Americas, Africa, and the Arabian Peninsula.

Types of Wool

Modern sheep are the result of millennia of breeding. In the pre-modern world, sheep were smaller, and their wool was lighter in weight and less fine. In some places today there are heirloom breeds similar to sheep of antiquity, such as the North Ronaldsay sheep found today in the Orkney Islands.

Wikimedia Ian Caldwell North Ron Sheep
North Ronaldsay sheep, photograph by Ian Caldwell via Wikimedia (CC BY-SA 3.0)

Early sheep populations also typically had two wool layers with different qualities. Underwool, i.e. the innermost layer, is softer, as is lambswool. The overhair is longer, more resistant to water, and more hard-wearing. The separate layers have been bred out from many domesticated breeds; wild sheep populations, however, may still exhibit the feature. Wool quality also varies between individual sheep and between the sexes. The finest wool is found around the front shoulder blades and coarsest around the rump and leg areas.

Wild sheep tend to be brown, but Iron Age finds do also include black, grey, and white wool. The development of dyeing made breeding white sheep desireable. Conscious selection seems to have begun by Iron Age at latest, probably already earlier.

Collecting Materials

It’s plausible that when humans were first learning to use wool, it was collected by picking from the environment (and presumably also by removing it from carcasses). Once sheep were domesticated, plucking, combing, or shearing it off living animals became options.

Wool on Barbed Wire
Wool on barbed wire fencing, photograph by Eppu Jensen

Modern sheep are first sheared at about at 8 months of age, and after that, typically every 6 or 12 months, but even up to 4 times a year is possible. A professional can take as little as 2-3 minutes to shear a sheep, but with prehistoric tools the process must have taken much longer.

Simple Handmade Shears
Simple handmade shears, photograph by Eppu Jensen

Processing Wool into Useable Forms

There are a number of pre-spinning steps that make it easier to turn wool into yarn. After fleece is collected, it needs to be sorted by type and quality. A modern fleece yields 5-7 types of wool. The wool is also washed to remove dirt, lanolin (the natural oil produced by sheep’s skin), and plant and fecal remnants. Depending on the intended use, some grease might be left in to retain its waterproofing qualities in the finished product or to aid spinning, because wool is easier to spin when some of the lanolin remains. Sometimes washing might take place before shearing, or if the sheared fleece was washed, it might be re-oiled.

Cleaned wool is carded or combed (the terms sometimes seem interchangeable) using two combs or brushes to disentangle, straighten, and align the fibers.

Flickr storebukkebruse Carding Wool
Carding wool by storebukkebruse via Flickr (CC BY 2.0)

Finally, clean carded wool can be spun into yarn ready for weaving, knitting, braiding, or other methods of textile production. Apparently, the earliest twill weaves are associated with wool (not linen), known from Anatolia in the 4th millennium BCE and the Caucasus in the early 3rd millennium BCE. Also the Hallstatt culture in Austria employed woollen twills during their Bronze Age (until approximately 1200-800 BCE) and Early Iron Age (800-400 BCE).

An example of the versatility of twill weave is the eye-catching diamond pattern, found for example in many Viking Age finds from Scandinavia. An early sample of diamond twill is found in the sleeves of the Lendbreen tunic from Norway (estimated to be from 230 to 390 CE).

Gudbrandsdolen Dagningen Lendbreen Tunic Sleeve Closeup
Diamond twill of the Lendbreen tunic, photograph by Mårten Teigen, Kulturhistorisk Museum via Gudbrandsdølen Dagningen

Common alternatives to spinning yarn and weaving fabric from wool include felting, fulling, or using the fleece as is. Felt is made from interlocked fibers pressed together. Felting is technologically much simpler than weaving; in addition, coarser hairs that don’t spin well might be put to use in felted textiles. Friction and pressure is applied to fibers in conjunction with a wash, i.e., the fibers are somehow agitated or pounded in warm or hot water. (This should be a familiar concept if you’ve ever inadvertently shrunk a wool garment in the washing machine.)

For example, the earliest (2nd millennium BCE) attested textile remains from a cemetery at Qäwrighul in Xinjiang, northwestern China, include woollen samples, almost all of which are either felted or plain weave fabric.

One of the advantages of felt is that it doesn’t fray. Felt can also be dyed and/or embroidered, so a felted textile need not look boring.

Flickr Rena Tom Felt Rocks
Felt rocks, a modern handcraft, photograph by Rena Tom via Flickr (CC BY-NC 2.0)

Fulling is similar to felting, but it starts with woven wool fabric instead of loose fibers. At Hallstatt, most textiles dating from the Bronze Age are coarse, single-color, and made of thick wool yarn loosely woven using plain weave, with a surface often heavily fulled. Some areas in the world have retained their fulling tradition to modern times, e.g. the waulking in the Outer Hebrides.

Once fibers have been felted or fulled, it’s irreversible; therefore, attention must be paid while processing wool to avoid unintentionally ruining it.

Dyeing Wool

There is evidence of early people taking advantage of natural variations in wool colors to create various kinds of stripes or other motifs. (E.g. the Turfan rider’s pants from ca. 1200-1000 BCE used at least two different natural shades of wool.) Dyeing took that kind of decorative treatment to another level.

In Europe, for example the Bronze Age samples from Hallstatt that date to 1500-1200 BCE show multiple colors (blue, red, purple, yellow, green, brown, black) and variation in both dye selections and shades of wool. The popularity of blue and black shades there is perhaps based on the arresting contrast to the polished and shiny bronze and iron jewellery.

Pinterest Leaellynasaurus Anglo Saxon Clothing
La Tène women’s dress reconstructed at the Musée d’Histoire de Berne in Bern, Switzerland, photograph via Leaellynasaurus at Pinterest

In the Levant, in southern Israel, woollen textile finds dyed red, blue, and yellow are dated to the Late Bronze and Early Iron Ages (13th-11th and 11th-10th centuries BCE), some even accompanied by tassels or beads. By 1000 BCE at the latest, dyeing wool was already so well established in the Tarim basin area (also in Xinjiang, northwestern China) that several finds include multiple colored fabrics, many of them multi-colored—plaids and brightly colored twills, for example, in yellows, blues, and reds.

Before dyeing, wool must be washed thoroughly, because lanolin may prevent the dyestuff from sticking onto the material or the results may become spotty. If using prewashed wool, the material must be wetted thoroughly and evenly for the same reason. Also, for an even color, large enough tubs and plenty of water must be used. A working estimate is to use 40 liters for 1 kg of wool yarn.

Typically, animal fibers absorb color more fully than plant fibers. However, animal fibers cannot tolerate extreme or sudden changes in temperature. Cool to cool-ish water must be used. If heating of the dye bath is desired, it must be done slowly, and care must be taken not just with temperature—keeping it below boiling—but also with stirring, squeezing, or rubbing for example while moving the material between containers, lest the wool felt.

Swan River Crafts Dyes and Dyeing Methods Fire
A reconstruction of an Iron Age natural dye bath using birch leaves in a wooden trough heated with hot stones, photograph by Mervi Pasanen

Another detail to watch out when dyeing wool is that using the same dye batch on wools of different colors (white, off-white, grey, brown) results in different shades. Also, different types of wool may not take color the same way, nor (if they were added during spinning) will any so-called effect fibers from other animal species. As always when dyeing for a project, it’s advisable to dye all of the material at the same time.

Flickr Meta van der Knijff wool dyed with mulberry bark
Rovings of wool dyed with mulberry bark, photograph by Meta van der Knijff, found via Flickr

Apart from the threat of felting, it is easier to achieve initial success when dyeing wool with natural materials than when dyeing plant-based fibers. However, stronger colors or certain more intense shades require overdyeing or multiple baths with different dyestuffs. For example, many Bronze Age and Iron Age textiles from Hallstatt show evidence of being dyed at least twice.

Regarding mordants or assists, also to note is that many plant-based ones tend to produce yellowy tones in wool, and that iron can easily make the texture rough and brittle. However, if urea was used for mordanting, the dyed product has to be washed and/or aired extensively to get rid of the strong smell. (And it still might not be enough, I understand.)

Typical Uses of Wool in Clothing

Due to its versatility and relatively easy production cycle, wool is an extremely common material. It’s probably true that if you can name an article of clothing, it’s been made from wool somewhere at some point.

Flickr Jonas Evertsson Coronation
Crown Prince Sir Gerhardt, an SCA character, in a reconstructed viking outfit, photograph by Jonas Evertsson via Flickr (CC BY-NC-ND 2.0)

Especially the coarser types of wool can feel rough against the skin. In many pre-modern cool clime grave finds (e.g. the Danish Huldremose woman from 2nd century BCE), there are remnants of plant fibers (linen, nettle, cotton, or the like) underneath wool remnants, so it looks like contemporary humans aren’t the only ones to prefer a softer layer next to their skin. Apart from the rough texture, wool is also susceptible to moths and carpet beetles, and direct sunlight will eventually damage the fibers.

Wool does make an excellent overlayer, though, because it’s warm even when wet. However, it doesn’t tolerate mechanical stress well, i.e., wool shrinks and felts easily. Depending on the processing methods used, wool can also resist water to some extent. This characteristic can be taken advantage of: for instance, when the grease is left partially in, when the fibers are felted, or when the fabric is fulled, the surface of the textile sheds droplets easily.

Water Drops on Felt
Water drops on felt, photograph by Eppu Jensen

There are other features that make wool a good material for pre-modern contexts. The excellent insulation and absorbtion capabilities of wool makes it useful in warm to hot climates as well as cool ones. It’s a solid choice for utility textiles, too, because there’s a certain amount of elasticity in wool, which can help with the longevity and adjustability of wool items. Wool doesn’t wrinkle or ignite as easily and burns less well than plant fibers. Unfelted it also absorbs water (or other liquids such as sweat or urine) quite well. In addition, wool is relatively light and muffles sound. Wool has also been used e.g. as a wrapping for the deceased, and articles of clothing that have reached the end of their useful life have been repurposed as utility textiles such as sacks, bandaging, various kinds of wipes, or diapers or swaddling clothes.

Flickr elaine Baby Blue
Baby Blue, a 3800-year old mummy from Tarim basin, Xinjiang, China, wrapped in a rust red wool shroud and wearing a fluffy blue bonnet, photograph by elaine via Flickr (CC BY-NC-ND 2.0)

SILK

Like wool, moth silk is an animal protein. The cultivation of silk (silk farming) is called sericulture.

Origins of Silk Production

Silk was certainly known for millennia prior to its appearance in historical records. For example, from Jiahu, Henan province, central China, there is biomolecular evidence of silk fibroin (a silk protein) found along with rough weaving tools and bone needles in tombs dated to ca. 6500 BCE. From the neighboring provice of Shanxi, from a Yangshao culture site, comes a find of cut silk cocoons dating back to between 5000 and 3000 BCE.

The earliest woven silk fabrics may have been used as wrappings of bodies for burial (two such samples from Henan province are dated to about 5000 to 3000 BCE). Other early scraps, including a remnant of a tabby weave from a Liangzu neolithic site in the Zhejiang province in southern China, date back to approximately 2750-2700 BCE.

By the Shang dynasty, 1600 to 1050 BCE or so, the domestication process had become highly developed, and silk weaving had achieved a very high level of quality. It is then we also find the earliest written records of silk (some oracle bone inscriptions) in China.

For a long time, from around 114 BCE to 1450s CE, the Silk Road—or Silk Routes—were the main network for cultivated silk trade between Asia and the Middle East, East Africa, and Europe. However, there were contacts even before that, for silk was found for instance in Egypt in a twenty-first dynasty mummy’s hair (1077 BCE to 943 BCE) and in a Ptolemaic-date (305 to 30 BCE) wollen tunic with decorative stripes with a weft of white silk. Around the same time, about 300-250 BCE, silk is encountered in Pazyryk in the Altai Mountains.

It is also possible that sericulture was developed independently and roughly concurrently in India. There is some evidence of processed silk fibers dating to about 2450-2000 BCE from Harappa and Chanhu-daro, two important Indus Valley civilization sites.

Types of Silk

The basic divisions of silk types are according to species of moths producing it, and according to fiber length and coarseness.

The domesticated silkworm or mulberry silkworm, Bombyx mori, is derived from a species native to northern India (Assam and Bengal) known as Bombyx mandarina Moore. These days most cultivated silk comes from Bombyx mori. The color of silk they produce ranges from white to cream white.

Flickr RONGHAI WEI Bombyx mori
A Bombyx mori caterpillar eating a leaf, photograph by RONGHAI.WEI via Flickr (CC BY-NC-ND 2.0)

Tussah silk is a term for wild silk from Asia. Several species are commercially viable, for example some Antheraea or Saturniidae species, whose silk is sometimes referred to by geographical area (Chinese tussah, Indian tussah, etc.). Its texture is a little coarser and color darker than Bombyx Mori silk, from light to dark honey and beige, some even greenish or greyish.

Flickr sj liew silk
Silk cocoons, photograph by sj liew via Flickr (CC BY-NC-ND 2.0)

There is also a species from another family of moths and butterflies, the Lasiocampidae Pachypasa otus, which produces a workable silk. Its present range is in the Mediterranean, and they were quite probably the source of the so-called silks of Cos of 5th century BCE Greece. For example, Aristotle (Historia Animalium 5.97.6 = 551b) describes the life cycle of a wild silk moth associated with Cos. Pliny the Elder (Natural History 11.76) describes a Syrian moth, which may be the same as the Coan one.

Silk is the only biological fiber that comes in long, continuous strands or filaments. (Some synthetic fibers, for example polyester and nylon, are also produced in filaments.) The kinds of domesticated silk fibers that are too short for regular processing are called waste silk. Wild silk is by default collected in smaller stretches, because the moth is allowed to emerge and break the cocoon. Both types of shorter silks can nevertheless be combed and spun.

(Rugs and other utility textiles are a good use for lesser-quality silks. Silk pile carpets are often exceptionally fine. For instance, the Baharestan Carpet was an enormous Sassanian work of art woven of silk, gold, silver, and rare stones. Kilims, on the other hand, could be put to work not just as rugs, but as wall art or other hangings, tablecloths, bedspreads, bags, or upholstery. )

Another division is between raw and processed silk. Technically, raw silk is any unprocessed form of silk that retains sericin, whether in unspun, yarn, or fabric state, but popularily the term is now often used to refer to raw silk fabric. Modern silks are classified to different grades according to quality, with A being the finest and F the poorest, with grades not eligible to rank below that.

Collecting Materials

Bombyx mori reproduce several times a year. Already by the Song dynasty, about 960-1270 CE, there were two or three annual silkworm harvests, but prized varieties could produce as many as eight generations in a single year.

After the Bombyx mori larvae hatch, they’re fed for about a month until they start spinning. Over two or three days, the silkworm secretes one continuous, fine fiber filament, approximately 300-800 m per cocoon.

After about 10 days from being finished, the cocoons are harvested, and hot air or steam is used to kill the pupae before they emerge as moths.

Flickr khasan Silk-moth just emerged
Silk moth just emerged, photograph by khasan via Flickr (CC BY 2.0)

Wild silk moths are allowed to emerge and break the cocoon, which shortens the length of silk fibers collected.

Processing Silk into Useable Forms

Silk is a polymer composed of two types of proteins, sericin and fibroin. Fibroin is the structural center of the silk. Sericin is a gluey or gummy outer coating, and if it is removed, the fiber becomes easier to use. The process of de-gumming Bombyx mori silk by boiling or immersing in warm water developed at some point between 2500-2000 BCE.

Raw silk still contains some sericin; its presence makes wild silk a bit stronger than cultivated silk, but also heavier; therefore, raw silk fabric tends to have a more uneven, nubby, almost linen-like texture.

After the cocoons are de-gummed, filaments are stroked with a brush, chopstick, or fingers and collected onto reels. Long stretches of intact filament are unwound from cocoons (reeling) and twisted together (throwing) into multi-strand thread or yarn.

Flickr Sandor Weisz How silk is made
How silk is made, photograph by Sandor Weisz via Flickr (CC BY-NC 2.0)

Some pieces of the cocoon are broken while harvesting and processing. For example, the coarse outside layers of cocoons, pierced cocoons (from moths allowed to hatch to lay eggs), or the leftovers remaining after reeling can be combed and spun for silk of lesser quality.

Silk is easy to spin because of its long fibers—the worm has a lot of the work already. Modern handspinners typically recommend fast and lightweight spindles and a lot of twist, especially for yarns meant for warp. Silk makes a high-grade yarn both smooth and strong with regard to its thinness, and it blends extremely well with other fibers.

However, silk fibers will catch easily on dry or rough spots on hands or nails, so using hand lotion or exfoliants (scrubs) is recommended for smooth spinning. Some spinner-suggested natural ingredients for skin softeners include olive oil, sugar, lemon juice, and sesame milk. Most of these would also have been available in prehistoric eras (depending on geography, of course).

It is difficult to find information on pre-industrial spinning speeds for silk. Presumably silk is about as speedy to spin by hand as wool. During the early years of the Warring States period (475-221 BCE), the so-called spindle wheel was developed. Although not a true spinning wheel as we know it, this device, where the spindle was driven by a belt (drive band), mechanized the reeling and throwing stages and helped to increase productivity by about three times.

Dyeing Silk

Silk has excellent dyeing properties, and early surving silk samples show evidence of dye work. By the latter half of the first millennium BCE at latest, there are dyed fabrics with detailed woven patterns or embroidery. (The collection at The Metropolitan Museum of Art even includes a 2nd century BCE fabric fragment with stencil printing and hand coloring.)

Flickr Madelinetosh madder silk
Silk hand dyed with madder pre-mordanted with alum, photograph by Madelinetosh via Flickr (CC BY-NC-ND 2.0)

A male mummy found at a site in Yingpan, Xinjiang, northwestern China, and widely referred to as the Yingpan Man, dated to 266 to 420 CE, was accompanied by a host of stunning, high-grade wool and silk textiles, many of them ornately woven in what must’ve originally been vivid colors. Among those colors were yellow and green silks, plus red and brown both in silk and wool.

Flickr elaine Yingpan Man
Some of the trappings of Yingpan Man, 3rd-4th century CE, photograph by elaine via Flickr (CC BY-NC-ND 2.0)

(Incidentally, the roots, bark, leaves, and berries of many mulberry cultivars can be used not just to feed the silkworms but also as natural dyes, which sounds very helpful for the early development of sericulture.)

Like wool, silk cannot tolerate extreme or sudden changes in temperature. It starts decomposing at about 170 degrees C. In dyeing, temperatures higher than 80 degrees C or so should be used with care, and only up to 140 degrees C at maximum. Silk requires more dyestuff to achieve deep or vibrant colors, because it dries two values lighter than when wet.

Typical Uses of Silk in Clothing

Silk is more heat-resistant than wool, but not impervious to fire. (Interestingly, the smell of burnt silk is similar to that of burnt hair.) Silk deteriorates with time, especially if sweaty or in sunlight, and might attract insects, especially if dirty. It’s also weaker when wet, tolerates strong detergents badly, and is susceptible to static cling in dry conditions.

On the other hand, silk is fine but strong for its delicacy, one of the strongest natural fibers. It has less elasticity than wool but more than cotton, which means that silk is elastic enough to be somewhat wrinkle-resistant. It absorbs moisture well—silk can absorb 30 % of its weight in liquid without feeling wet—and is a good insulator. Silk is also lightweight, soft, and shimmery.

Silk Satin and Cotton Satin
Blue silk satin and grey cotton satin, photograph by Eppu Jensen

Silk is a very versatile fiber mostly used for luxury fabrics both historically and now. (From my own experience I can say that silk satin is especially lovely and lustrous.) It’s been sewn into tunics, gowns, belts, mittens, socks, pillows, pouches, sachets, and wrapped as burial shrouds, among other uses. High-status uses include ecclesiastical vestments like the papal pallia.

Fashioning the Viking Age Ariadne Kordella Hvilehoj Tablet Weaving
Weaving a tablet-woven band in silk and silver based on the finds from a Hvilehøj woman’s grave (dated to the 900s CE) in Jutland, Denmark, photograph Ariadne Kordélla via Historical Museum, University of Oslo

Alternatively, silk was often used in embellishings such as ribbons, bands, or embroidery along with other fibers, even thin gold or silver thread. (An example is the Parthian remnant of a cotton-lined felt garment, likely for a child, with blue silk cord closure, from ca. first half of the 1st century BCE, currently held at The Metropolitan Museum of Art.) These were easy, relatively inexpensive ways to introduce some indulgence into your wardrobe.

How It Happens looks at the inner workings of various creative efforts.

Making Clothes 4: Spinning, Weaving, and Dyeing

This post is a part of our Making Clothes series.

Before you can sew clothes, raw material large enough for the desired use must be obtained. Typical larger materials for clothing include leather, felt, and fabric. Leather is reasonably simple to obtain, and felting is technologically one of the simplest fiber crafts. Before fabric, though, there must be yarn. Spinning is the formation of yarn, and the creation of fabric from yarn happens by weaving or knitting.

Spinning and weaving happen more or less the same way independent of the material—for example, there is broadly speaking little difference in handling wool and flax. The desired quality is ultimately the most important aspect affecting the work.

This post will concentrate on weaving and exclude various looping methods, like twining, nålbinding, knitting, or lacemaking. Also not included are braiding or cording techniques, like fingerweaving, Japanese kumihimo, or tablet weaving.

There are more variations in dyeing depending on the material. This post covers some basic principles of dyeing, and the specifics about plant- or animal-based fibers are returned to in later posts.

Spinning

The process of making yarn by twisting clusters of fibers into a continuous length is called spinning. It starts with a bunch of fibers (roving) from which fibers are continuously pulled, twisting the material all the while between fingers.

Flickr Natl Rural Knowledge Exchange Spinning
Hand spinning by pulling wool out of a roving with the right hand and twisting with the left, photograph by National Rural Knowledge Exchange via Flickr (CC BY 2.0)

There are two directions a spinner can turn the fiber when making yarn, clockwise and counterclockwise. The resulting yarns are typically described as z-twisted or s-twisted.

Characteristics of spun yarn vary according to the material used, fiber length and alignment, quantity of fiber, and degree of twist. Yarn with tight or high degree of twist is typically stronger; conversely, low twist produces softer yarn. The amount of twist can also alter the look of the woven surface. (The modern crepe yarn, for example, is formed by hard twisting or overtwisting, which makes the yarn curlier—also variously described as crinkled, crimped, coiled, kinky, or wavy—and usable in textured weaves like crepe fabrics.) Tighter-twist yarn is easier to handle and unravel than low-twist.

In addition, two or more single strands can be twisted together to make multiple-ply yarn. Adding plies adds to the strength of the yarn, but also to the work required. In weaving, warp yarns tend to be stronger, smoother, more tightly twisted, and more even than weft yarns. In Iron Age Western Finland, for example, while weft was often one-ply, warp was two-ply (two z-spun yarns s-spun together).

For most of the pre-modern time, hand spindles were the only spinning tool available. A spindle is basically a long thin stick or another similar piece around which the freshly formed yarn can be wound. They are often used with weights (whorls) attached to the bottom to provide more torque and a longer spin time.

British Museum Oinochoe Woman Spinning
Woman spinning via British Museum (Attica; circa 490 BCE; white ground vase)

Spindle spinning is also called drop spinning. Another ancient option is supported spinning, with rolling fibers on the thigh.

Spindle whorls are a common archaeological find type from Neolithic, Bronze Age, and Iron Age sites. The weight of extant spindle whorls varies. Switching whorls might be done to affect yarn thickness and quality (finer yarns require a smaller, lighter whorl, for example). Different eras or cultures might also have their own preferred whorl sizes.

Spindles can be used with a distaff. It’s at its simplest a stick or a board that the unspun fibers are attached to. The spinner feeds material from the distaff with their back hand into the front hand for spinning. Extant distaffs go back at least to the Late Chalcolithic period (the Copper Age), around 7000 to 5000 BCE.

The speed of yarn production by spindle spinning varies according to the quality, gauge, and twist of desired yarn, and—naturally—from spinner to spinner. Plying multiple finished yarns together is faster: it takes about half the time of spinning a one-ply yarn. Andean spinners working with drop spindles on sheep and alpaca fibers spin about 100 meters per hour. Modern hobbyist spindle spinners with modern tools but average skill might manage about 50-100 meters of one-ply yarn per hour, while the seriously experienced ones could reach 150-200 meters per hour.

Flickr Kylie New Spindle
Dyed roving, wooden spindle with a spindle whorl, and hand-spun yarn, photograph by Kylie via Flickr (CC BY-NC-ND 2.0)

On the other hand, modern reconstructions of garments based on archaeological finds and performed on reconstructed tools seem to involve longer processing times. Some re-enactors estimate spinning speeds of 35-50 meters or 40-60 meters per hour. We can only guess at the speeds Neolithic, Bronze Age, and Iron Age spinners could’ve reached, but 50 m per hour seems a reasonable guesstimate.

Weaving

The origins of weaving are difficult to pin down exactly, but it’s certain humans have also been weaving for thousands of years. At its simplest, weaving means interlacing two strands of material together (with a basic over-some-under-some structure) to form a larger surface.

The earliest cloth was probably netlike. Among the oldest surviving textile fragments, we have for example a piece from Guitarrero Cave in Peru from 12th-11th millennium BCE made from agave or bromeliad leaf fiber (likely twined and not woven). Several woven fabric fragments made from locally sourced oak bast were found from Çatalhöyük in modern Turkey and dated to 6700-6500 BCE. (Bast fibers come from the stem or stalk of the plant, even trees.)

Also at its simplest, weaving can be performed completely with your hands (like in making baskets or simple mats). Certain tools make the work easier and quicker, though.

Weaving takes place on a frame called a loom. The small backstrap loom is an older loom type, still used to make traditional textiles e.g. in Central and South America. In Europe, an upright loom (warp-weighted loom) became dominant until the introduction of the horizontal treadle loom (foot loom). We have evidence of upright looms from Neolithic period onwards (e.g. the Starčevo culture in modern Serbia and Hungary, ca. 6200-4500 BCE). One of the frequent archaeological finds are loom weights. They are tied to the bottom of warp threads on an upright loom to maintain the necessary tension for weaving.

Flickr A Davey The Warp-Weighted Loom
A reconstruction of an upright loom at the Institute for Medieval Archaeology, Bergen, Norway, by A. Davey on Flickr (CC BY-NC-ND 2.0)

A woven surface is made by crossing two sets of yarns (or threads, strings, etc.) at right angles, as opposed to looping like in nålbinding, knitting, or lacemaking. Warp yarns run lengthwise along the fabric, while weft (or filling) yarns travel across from side to side. A weaver begins from one side, brings the filling over to the opposite side, turns the filling around the outermost warp yarn, and returns the weft to the beginning; this back-and-forth sequence is repeated until the fabric is done. The sides where the weft takes a turn, called selvages or selvedges, become neat as a result of the turning.

At its simplest—called plain weave—one weft yarn travels over and under alternating warp threads. On subsequent rows, the pattern shifts: where the filling went under a warp thread on the previous row, it now goes over instead.

To create this offset, the warp needs to be adjusted between each time the filling is passed from one side to the other. This is done by arranging the warp threads into two or more groups (depending on the weave type). For example, in plain weave every even-numbered thread is in group A and every odd-numbered in B. These groups are temporarily held apart, i.e., they are alternatively raised and lowered to create an opening known as a shed through which the weft is passed. A foot loom uses treadles (a kind of pedal) and harnesses (a kind of a frame) to do the raising and lowering; on an upright loom, the sheds are raised and lowered with the help of horizontal rods (shed-rods or heddle rods) holding the thread groups apart. Complex weaves require more sheds, and the weaver must remember the correct sequence of raising and lowering the sheds to produce the desired pattern.

Flickr LollyKnit Shed
Shed on a loom, photograph by LollyKnit via Flickr (CC BY-NC 2.0)

On upright looms, each new row of weft is pressed close to the previous layers with a weaving sword or beater in order to create an even, tight weave. (Modern treadle looms have built-in horizontal beaters that speed up the process considerably.) So, there are four steps to the basic weaving rhythm: the shed is raised, the weft passed through, the shed is closed, and the weft is beaten into place. For example, on the first row, the weaver opens shed A, passes the filling through, closes shed A, and beats the weft in place. On the second row, the weaver opens shed B, passes the filling, closes shed B, and beats again. And so on.

Working takes place downwards on upright looms, which means that fabric forms at the top and is beaten upward (on horizontal looms, finished fabric accumulates towards the weaver). Typically in earlier periods, a specific length for a specific use was planned and executed on upright looms; weaving long stretches to cut down as needed (what we think of as bolts of fabric) is easier on horizontal looms.

There are three basic weave types: plain weave, twill, and satin weave. (Note that satin does, in fact, refer to a weave and not the material of the fabric. Hence, we talk about cotton, silk, polyester, etc. satin. Sateen is a term sometimes used of cotton satin.)

New Tess Weaves
Basic weaves, diagram via New Tess

Plain weaves, also known as tabby or linen weave, are the easiest to make and tend to be strong and hard-wearing.

Twills are also durable and have a higher resistance to tearing than a plain weave. They are characterized by a diagonal line (think jeans, for example). The diagonal is formed by floating the filling over one (or more) warp threads and then sliding it under two (or more) warp threads; with every new row, the pattern is offset, which means very particular shed arrangements. There are several ways of making twill weaves—alternating the number of threads floated over, or the placement or direction of the offset, for example—that can be used to create fabrics with different looks and qualities.

Satins are twill-like, but they don’t have the obvious twill-like diagonals, because they have fewer intersections of warp and weft and a smooth, shiny appearance. This is because the floating yarns skip over a larger number of yarns than in twill and this allows more light to be reflected on the top side of the fabric. They tend to be less durable and snag more easily. Often satins are used for dressier or fancier purposes.

Silk Satin and Cotton Satin
Blue silk satin and grey cotton satin, photograph by Eppu Jensen

There are several ways besides weaves to customize a fabric for a particular function or look. Variations can be created by combining yarns of different materials, thicknesses, textures, twists, or colors. Sometimes more than one yarn can be bundled together and treated as one. Also the number of warp and weft yarns per centimeter (thread count) affects the look, drape, and feel of fabric.

Flickr Lettuce Walls Weaving
“Walls” Weaving with texture created by alternating warp and weft thread counts, photograph by Lettuce via Flickr (CC BY-NC-ND 2.0)

Like the speed of hand spinning, the speed of hand weaving depends on a number of factors, including thickness of yarn, complexity of the weave (number of sheds to manage), thread count, and width and length of the finished fabric. Certain Nordic finds indicate that the widths of cloth could vary from 68 to about 140 cm, but indications of greater woven widths have been found elsewhere in Europe and in Central Asia.

Like with spinning, the weaving speeds Neolithic, Bronze Age, and Iron Age people can only be guessed. It has been estimated that spinning takes 5-10 times more time than weaving. A Viking Age textile reproduction project by National Museum of Denmark that was started in 2018 reached weaving speed about 3 cm per hour on both a tabby and a twill sample 60 cm wide.

Dyeing

At its core, dyeing may sound simple, but in fact it can add to both the textile cost and processing time by a significant factor.

Dyes are extracted by heating the dyestuffs in water, then the dye bath is strained to remove the debris, and finally the fibers to be dyed are immersed, left to soak, and rinsed. Cold dye baths are possible, but they tend to be much slower, so modern instructions almost always give directions for hot baths.

Many natural dyes don’t produce a strong or a long-lasting color (lightfastness, washfastness) on their own, which makes it likely that experimentation with dyes has a millennia-long history. For example, the earliest known use of indigo dye comes from 6000-year-old cotton fabrics from the Preceramic site of Huaca Prieta on the north coast of Peru.

The basics needed for dyeing include equipment for gathering and measuring dyes; containers or vats and strains or sieves for washing and rinsing, for the dye bath, and for storing the dyes themselves; water, soap, and utensils (long spoons or tongs or the like); a heat source; ventilation (for odor or toxicity control); and finally, drying space out of the sun (to avoid premature fading).

Flickr Ken Bosma Alpaca Yarn Natural Dyes
Alpaca yarn and various natural dyes set out in bowls for a demonstration in Peru, photograph by Ken Bosma via Flickr (CC BY 2.0)

It’s also possible to dye a piece multiple times with the same dyestuff (overdyeing) or with other colors to deepen or alter the resulting shade. The yarns for one project should preferably be dyed all at once, however, because it’s difficult to get multiple matching color batches using natural dyes. Furthermore, dyeing vats need to be big enough to immerse the material completely and loosely, otherwise the result may be spotty or uneven.

Natural dyes come from grassy and edible plants (roots, stems, leaves, flowers, fruit; including food waste such as onion skins or carrot tops), trees (bark, leaves, needles, nuts, cones), lichens, fungi, and algae. Some dyestuffs even come from the animal kingdom, for example an aphid, Dactylopius coccus, still used for carmine red, or the family Muricidae sea snails, from which royal purple was derived.

Mordants and assists are an optional step. They help fix the dye to the fiber, increase colorfastness, and influence the range of possible colors. Often they deepen the color, but sometimes they mellow it, or tint the result into a greener or browner range. Mordanting can be done prior to dyeing, concurrently, or after dyeing.

There are a variety of different mordants and assists, and different methods to apply them. Mordants and assists can be mineral-based (e.g., alum, iron), plant-based (e.g., tannic acids or tannins like oak gall), or other substances (e.g., lye, ash, ammonia from urine). In the past, toxic mordants like salts of metals such as chrome, copper, tin, or lead were also used in dyeing.

Dyeing can be done almost in any stage of processing: fibers, yarns, finished fabric, or even a finished garment can be dyed. It’s practical to pick a specific stage depending on the intended use and appearance (e.g., a basic saddle cloth vs. an embroidered multi-piece ceremonial suit) or cost and availability of materials (e.g. locally available birch leaves vs. murex sea snails for royal purple).

Flickr Charlotte Powell A Year of Colour Exhibition Yarns
Dyed unspun fibers in a variety of bright colors from A Year of Colour exhibition by Birmingham Guild of Weavers, Spinners & Dyers, photograph by Charlotte Powell via Flickr (CC BY-NC-ND 2.0)

For instance, two batches of yarn could be dyed different colors, then one used on the warp and the other on the weft, or woven into stripes on a warp of a third color. Cheaper, locally available dyes could also be selected for the majority of a garment and supplemented with embroidery in a yarn dyed with an expensive import dye.

As if there weren’t enough variables already, fibers will take dye in different ways, i.e. the same dye bath will result in a different shade in silk, linen, or wool. Dyes derived from the same plant can also produce different color year by year, or in different doses, or by different dyeing methods.

In practice, it’s often difficult to inspect dyes in an extant archaeological sample, since multiple ways of dyeing can produce the same result. Modern research methods like chromatography and mass spectrometry have started to give intriguing results, though.

A modern dyeing process using natural dyes includes several steps: washing or presoaking fibers; making and straining the dye bath; cooling the bath (for animal fibers); immersing material and reheating the bath (slowly for animal fibers); simmering (plant fibers) and/or letting materials sit while stirring the bath frequently; rinsing; drying.

If dried plant dyestuffs are used, they need to be soaked, sometimes for days, before making the bath. If mordanting or assisting is desired, at minimum it takes half an hour to an hour, but could also add multiple hours to the whole dyeing process. Merely boiling the dye bath might take an hour, as could soaking the fibers in the bath. Cold dyeing (where the dye bath containing the immersed fibers is not reheated) can take several days.

Swan River Crafts Dyes and Dyeing Methods Fire
A reconstruction of an Iron Age natural dye bath using birch leaves in a wooden trough heated with hot stones, photograph by Mervi Pasanen

How long dyeing took for Neolithic, Bronze Age, and Iron Age workers is, unfortunately, extremely difficult to estimate. It’s probable that the whole process took days (achieving royal purple certainly did), possibly even weeks, when all steps are considered.

How It Happens looks at the inner workings of various creative efforts.

Making Clothes 3: Production of Raw Materials

This post is a part of our Making Clothes series.

Our imaginary wardrobe is made up of four different kinds of material: wool, linen, silk, and leather. Each of these materials has a different origin. Today we consider the time, effort, and resources that went into producing the raw materials for each of these components.

Wool

Wool is processed from animal fleece, most typically sheep. Sheep grow their fleece out year round, and it serves them as insulation against cold, wet, and the hazards of the wild. Wool is traditionally gathered in the spring, so that sheep can have the warm summer months to regrow their coats.

There is no definite rule for how much pastureland it takes to raise sheep. Numbers depend greatly on the quality of the land and how it is managed. Modern farming experience gives us a rule of thumb that one sheep needs at least a hectare of land for a year’s grazing, although in historical conditions, the amount of land needed to raise sheep could have been significantly more.

Modern sheep are the result of millennia of breeding. In the pre-modern world, sheep were smaller, and their wool was lighter in weight and less fine. In some places today there are heirloom breeds similar to sheep of antiquity, such as the North Ronaldsay sheep found today in the Orkney Islands. One North Ronaldsay sheep yields between 1 and 1.5 kilos of fleece in an annual shearing. The shorn fleece loses some weight as it is cleaned and processed in preparation for spinning, from as little as 15 percent to as much as 80 percent.

Linen

Linen fibers are derived from flax, a woody-stemmed plant grown both for its fibers and for its oily seeds. Flax historically has been an important crop in many parts of the world.

Producing flax starts with plowing and sowing. An acre of land was traditionally defined as the amount of land that one farmer with one ox could plow in a day. Since a hectare is approximately two and a half acres, plowing a hectare of land in historic conditions would have taken about two and a half days. After sowing, flax plants take about 100 days to grow from seed to maturity.

Flax plants require deep, rich soil and draw lots of nutrients out of the earth, which means that fields repeatedly planted with flax will become exhausted in a matter of years. Sustainable flax production requires rotating with a less demanding crop and fertilizing to restore nutrients. Depending on fertilizer amounts, modern flax may yield between 4.9 and 7.8 tonnes per hectare. In historical conditions, dependent on animal manure or legume cultivation for soil maintenance, flax yields were unlikely to be as high.

Harvested flax requires extensive preparation to create usable fiber. The processing of flax removes 70-90% of the plant to yield fiber fit for spinning and weaving.

Silk

Silk fibers are derived from the cocoons of insect larvae, primarily the domesticated mulberry silkworm, although other creatures’ fibers have also been used historically. Domesticated silkworms are fed on mulberry leaves until they reach their fourth molt. The worms then spin cocoons by producing a long single filament which they wind around themselves.

It takes about 28 days from when silkworms hatch until they spin their cocoons. During that time, domesticated silkworms require careful tending and feeding, since most of their survival instincts have been bred out of them to make them more suitable for fiber production. They move very little and will not go in search of food if it is not provided for them.

Silkworms feed exclusively on the leaves of the mulberry tree. One mature tree produces enough leaves to feed about ten worms until they are ready to spin. Newly planted mulberry trees have to grow for about 8 months before they start producing leaves. To produce 1 kg of silk thread, 3,000 silkworms consume 104 kg of mulberry leaves, grown by about 300 trees.

Leather

Leather is produced from animal skins. A wide variety of different animals, both wild and domesticated, are used for leather. Domesticated mammals like cattle, sheep, goat, and pig yield most modern leather, although leather can also come from wild animals such as deer, squirrel, and rabbit, as well as non-mammals like ostriches, lizards, and fish.

The amount of leather that comes form one animal depends on the size of the animal and the condition of its hide. In modern leather processing, a typical cow hide yields 4.6 square meters of finished leather, while a sheep hide yields 0.8 square meters. Smaller animals naturally have smaller hides, and hides in poor condition may have to be trimmed smaller to be usable.

Skinning an animal after slaughter is relatively quick, but it is only the first step in leather production. The preparation, preservation, and treating of the hide takes many more steps that may amount to months of labor before the leather is ready to be cut, fitted, and finished.

Images: Woman shearing sheep, from Book of Hours by Jehan de Luc via Wikimedia (currently The Hague; 1524; illumination). “Flax blooms,” photographed by Leonid Kulikov or Mykhailo Kvitka via Wikimedia (currently Fine Arts Museum, Kharkiv; 1893; oil on canvas; by Mykhaylo Berkos). Stamp of Afghanistan showing mulberry branch and silkworms via Wikimedia (1963; postage stamp) (this work is in the public domain under Afghan law). Leatherworking via Wikimedia (1568; woodcut)

Making Clothes 2: Historical Inspirations

This post is a part of our Making Clothes series.

For the purposes of these posts, we are imagining an outfit that might have been made and worn in many parts of Eurasia or North Africa in the premodern period. Our imaginary wardrobe takes inspiration from a variety of sources, both archaeological and written.

Our oldest piece of inspiration comes from the Altai Mountains in central Asia. In the fifth century BCE, a woman was buried in a tomb on the high Ukok plateau of what is today the Altai Republic in Russian Siberia. The cold, dry climate of the region helped preserve the burial until the late twentieth century when it was discovered and excavated. The woman, popularly known as the Siberian Ice Maiden, was well dressed for her burial, and her clothes were remarkably well preserved. She wore a dress of wool and camel hair, a silk shirt, and thigh-high leather boots, along with a tall headdress made of wood.

Reconstruction of the Ukok woman’s clothing and coffin, photograph by Sue Fleckney via Wikimedia

For our next historical reference, we look to the Vindolanda Tablets, an assortment of documents written on thin sheets of wood found at a Roman fortress near Hadrian’s Wall in northern Britain. Wooden tablets like these were used in antiquity for personal letters, memoranda, and other everyday documents of the kind that rarely survive for very long. These documents were written in the first and second centuries CE, and survived because they were preserved in waterlogged ground around the fortress. Among them we find the household accounts of Roman soldiers and officers detailing what sort of clothes they were spending their money on. A couple of tablets record the business affairs of a man named Gavo. We do not know who he was or what role he played in the life of the fort, but he seems to have supplied a lot of clothing and other textiles. One tablet lists some foodstuffs along with several bedspreads, a cloak, and thirty-eight pounds of wool. (Tabulae Vindolandenses II 192) Another tablet, part of whose text has been lost, listed at least ten cloaks of different types, three tunics, seventeen hooded cloaks, and some number of capes. (Tabulae Vindolandenses II 207) Yet another letter—we don’t know from or to whom—evidently accompanied a gift of underwear, socks, and sandals to some lucky soldier. (Tabulae Vindolandenses II 346)

Reconstruction of a Roman soldier’s dress, photograph by Fabryb13 via Wikimedia

Our last piece of inspiration comes from Egypt in the late antique period, probably the fifth century CE. It is a beautifully preserved tunic made of linen with intricate decorations woven into the fabric in dyed wool. The decorations include flowing vine motifs and depictions of the god Dionysus in surrounded by mythical sea creatures.

Tunic with Dionysian Ornament via the Metropolitan Museum of Art

We’ve chosen this set of examples to inspire our fictional wardrobe for a few reasons. Between them they span nearly a thousand years of history across Asia, Europe, and North Africa. They come from a wide range of environments, from the cold, arid heights of Central Asia to the hot, dry Egyptian desert to the rainy British Isles. The Ukok woman presents us with the complete outfit of one person; the Egyptian tunic gives us a detailed look at the construction of one garment; and the Vindolanda Tablets help us see individual items of clothing in the context of a larger economic and social world.

Our Example Outfit Described

For the purposes of quantifying necessary raw materials and production time to make a single outfit, we needed a specified set of clothing.

Our imaginary wardrobe starts with a long linen undertunic or short linen underdress. (From the point of view of materials and time required, we consider a dress very roughly equivalent of pants plus a tunic.)

The underlayer is topped by a silk overtunic. For the under- and overtunics, we imagined a simple T-style cut. Many historical tunics use gores at the side and central seams to add comfort, but we’ll try to keep our numbers manageable and stick with a basic design.

In addition, we include leather shoes or boots. Finally, a good-sized, rectangular wool cloak or mantle protects the wearer from elements.

For simplicity’s sake, we postulated a dyed but otherwise unadorned outfit, since the size and amount of decorative banding, embroidery, etc., can vary so widely. Accessories like underwear, wool socks and wool legwraps, hoods and headwear, belts, pouches, bags, and the like were also left out of our example.

How It Happens looks at the inner workings of various creative efforts.

Making Clothes 1: Introduction

For most of human history, people couldn’t walk into a shop and buy a new outfit. The work of creating clothing was complex and demanded multiple skills and a lot of labor. In the pre-modern world, the processes that led from raw materials to finished clothing were long and took up a significant amount of everyday people’s time and energy.

We’re beginning a new series of posts where we examine what it took to make a single outfit, from the raw natural materials to the finished product, in a world without factories and global supply chains. To do that, we’re starting with an imagined wardrobe that would have been at home in many parts Eurasia within the past couple of millennia and working out just what would have gone into creating such a set of clothes, both the materials it would have taken to make and the work that would have gone into gathering, processing, and finishing those materials.

In our next post, we’ll introduce our imaginary set of clothes and show you some of the historical examples that inspired it. After that, we’ll talk about where the raw materials to make our set of clothes would have come from and the labor that would have gone into producing and gathering them. From there, we’ll break down just how each of those raw materials got turned into textiles, and how those textiles then got turned into clothing. We’ll round the series out by trying to quantify the labor and resources that would have gone into our imaginary wardrobe with some hard(-ish) numbers.

Image: Women doing textile work, from Boccaccio’s De Mulieribus Claris via Wikimedia (currently Bibliothèque Nationale, Paris; 15th c.; illumination)

How It Happens looks at the inner workings of various creative efforts.

DIY of Eowyn’s Camp Dress

What a fantastic DIY cosplay of Eowyn’s camp dress from Peter Jackson’s Lord of the Rings movies this is:

Cation Designs Cindy Eowyns Camp Dress Cosplay

Made and worn by Cindy at Cation Designs, photo by @captured.by.shirelle. You can read more about the construction process at Cindy’s blog.

One of the really creative solutions she came up with is to inexpensively bone the corselet with zip ties. Much easier to get than corset bones! Another trick Cindy uses is to buy solid-color cotton sateen sheets in good condition from the thrift store to use as costuming material. (I’d add thrift store curtains, but in those there’s much more variability of both quality of material and fiber content, so they might require more time to go through to find anything worthwhile. Then again, if you do find good panels, often there’s quite a bit of fabric.)

Cindy also made the flag herself from a pillowcase using acrylic paint and gold pens. It’s as staggeringly handsome as the costume. Here’s a closeup:

Cation Designs Cindy Rohan Flag

The spear is made from foam, duct tape, and a wooden dowel, and looks as fantastic as the rest of the outfit. Kudos all round!

Images: Eowyn cosplay at rocky landscape by @captured.by.shirelle via Cation Designs. Rohan banner by Cindy at Cation Designs.

How It Happens is an occasional feature looking at the inner workings of various creative efforts.

Ancient Pants for a Rider Reconstructed

The precise construction of ancient textiles is often a matter of educated guesswork, since fibers—if they survive in the first place—tend to rot in most soil types. Now we have a little more to go on: in March 2022, a study was published on the technical details of fabric and finishing techniques of eight wool garments, including a spectacular pair of pants, belonging to a rider buried ca. 1200-1000 BCE.

One of the oldest preserved pairs of trousers in the world, the garment was found at Yanghai, Turfan (also known as Turpan), in the Xinjiang area in Northwest China. It’s an area with a long history and multiple tombs, as befits a stop on the Silk Road.

The breeches were made from three pieces: one for each leg and one for the crotch to combine the two sides.

HS Archaeological Research in Asia Wagner et al Turfan Rider Pants1

All three pieces included some woven patterning. Besides striping, the leg pieces also had a decorative band in a T-hook pattern (a kind of geometric design) around the knees.

HS Archaeological Research in Asia Wagner et al Turfan Rider Pants2

Interestingly, it seems that the pant pieces were woven on a loom into the final size and shape; no cutting from a longer length of cloth was involved. A combination of multiple techniques was also discovered: regular twill weave on the majority of the work, the weave on the knees, and a third method on the upper areas to create a thick waistband.

All this means a high skill level was needed in gauging not just the size of the future wearer, but also the amount of yarn required, plus naturally the various weaving techniques.

In the course of studying these clothes, reproductions were made. The outfit consists of the trousers, a poncho with belt, two pairs of braided bands (one below the knees and another at the ankles), and a wool headband.

HS Archaeological Research in Asia Wagner et al Turfan Rider Pants3

I’ve recently done some reading on recreating prehistorical clothing from scratch, and let me tell you, all of the shearing, washing, sorting, carding, spinning, dyeing, and—only at the very end—weaving plus sewing was no mean feat. The gorgeous (pre)historic garments we have managed to find must have taken a simply enormous amount of work to create. Even with a little weaving and band making plus a lot of sewing under my belt (pun intended—sorry, not sorry) I have a hard time imagining the magnitude of effort required in textile production before modern machinery.

Found and images via Helsingin Sanomat. (NB. Finnish only.) In English, you can read more at Science News.

How It Happens is an occasional feature looking at the inner workings of various creative efforts.

A World of Warcraft Druid Cosplay by Svetlana Quindt

Svetlana Quindt at Kamui Cosplay makes seriously impressive cosplay outfits from scratch. Here are a few of her photos of the druid tier 9 set from World of Warcraft.

Flickr Svetlana Quindt Druid T9 w Flute

Her attention to detail is amazing! Take a look at the Making of photoset on Flickr for a sampling.

Flickr Svetlana Quindt Druid T9 Vest Progress

And because merely sewing an intricate costume wouldn’t be enough, Quindt has embedded LED lights into some of the gems.

Flickr Svetlana Quindt Druid T9 Skirt w Gems

A staff, of course, is included.

Flickr Svetlana Quindt Druid T9 w Staff

OMG, there’s even a little pouch built into the shoulder piece! I’m afraid I’m way too impatient to make anything this detailed, even if I looked like an Elf… Although, the Dwarven females look about the right height for me if I squint hard. LOL! 🙂

Quindt has written blog posts on the build process, available at the Kamui Cosplay website.

Images: Druid tier 9 costume by Svetlana Quindt: With flute. Making the vest. Skirt with gems. With staff.

How It Happens is an occasional feature looking at the inner workings of various creative efforts.

Estonian Muhu Skirts Dyed with Mine Chemicals

Kadri Liik shared on Twitter some of her family history of using mines to dye fabric for colorful folk skirts in western Estonia in 1930s.

Strictly speaking, of course, it’s not mines themselves that were used in dyeing, but the picric acid in them. Russian World War I battleship Slava sank in 1917 between Muhu island and mainland Estonia, only 12 years after putting to sea.

Google Maps Muhu Estonia

Estonians scrapped the ship in the early 1930s. During that process, picric acid was extracted and put to use. According to Encyclopaedia Britannica, picric acid was first used in dyeing in 1849, initially of silk. In Muhu, it was apparently used with wool.

The bright yellow derived from picric acid was locally known as mine yellow (miinikollane). Below is the Muhu skirt made from scratch by Liik’s grandmother or great aunt in 1930s:

Twitter Kadri Liik Muhu Skirt

Apparently, Muhu skirts enjoyed such popularity that older women might be doing their everyday chores in them as late as the 1960s.

It’s quite striking, isn’t it? It seems that some of these traditional patterns survive, either in traditionally woven textiles or as prints on modern fabrics, which is fabulous. I’m not sure I’d like to know exactly how the picric was extracted in the 30s, though…!

Images: map of Muhu island by Google Maps. Skirt by Kadri Liik via Twitter.

How It Happens is an occasional feature looking at the inner workings of various creative efforts.

Stupid Writer Tricks: Character Voices

Writing dialogue is not one of my strengths as a writer. I often struggle to give my characters their own voices. So I have a stupid trick to help me get the voice right for characters I’m going to spend a lot of time with: When thinking of their dialogue in my own head, I give them a distinctive accent, tone, or speaking style. It doesn’t always come through onto the page, but it helps me think about how a particular character would talk.

For an example, here’s how I wrote the voices for the main characters in my story “How I Saved Athens from the Stone Monsters.”

The story is about Mnestra and Lampedo, two flute girls working the streets of Athens who get caught in the chaos when the rich, ambitious aristocrat Alkbiades uses a mysterious artifact to make the city’s statues come to life and go on a rampage. To make the story work, it was important to convey the personalities of these three key characters.

Mnestra, as narrator of the story, was the most important to get right. I wanted her to come across as self-possessed, confident, and a little snarky. I also wanted her to feel accessible as a character, someone we felt like we knew. With a story set so far in the past, there was a danger that the characters would feel distant and hard to identify with. Mnestra’s world is certainly not like our own, even before the monsters appear. I wanted to close that gap and make her feel real. There’s also a long history of ancient Greek and Roman characters in modern fiction written as if they were stiff upper-class Brits (in no small part because Greek and Roman literature was for a long time a crucial part of upper-class British education). I didn’t want Mnestra to sound like that.

So when I was thinking about her lines, I thought of her as a jaded teenager. I wrote the first few sentences of the story almost before I really knew where the plot was going, just to make sure I had Mnestra’s voice down.

Okay, so that thing with the statues? The smashed penises thing? That was my idea. But let me explain. I had a good reason for it.

She’s a little overly blasé and vague like a teen trying to play it cool. She leads into the story gradually, like a high schooler with a bent fender sidling up to a freaked-out parent.

In the first draft of the story, there was a lot more of Mnestra’s attitude throughout, but in revising, I found that I didn’t need all of that, and in fact once the action picked up later, it just slowed things down. I edited out most of it, but kept a few sarcastic asides in where they felt appropriate.

Lampedo was a different problem. Her character changed a lot as I was writing. I originally wrote her as shy and delicate, but some good editorial feedback made me rethink her relationship to Mnestra. I rewrote the pair to be less “surrogate sisters” and more “buddy cops,” which gave the story more to work with. Lampedo instead ended up being tough and prickly.

I had a hard time writing the new version of Lampedo’s voice until I started thinking of her with a Russian accent. Not just a Russian accent but a Russian attitude: proud, prematurely world-weary, fatalistic. Here’s a little dialogue between Mnestra and Lampedo after they first get away from the attacking statues.

“Isis’ milk!” I hissed at her. “What did you think you were doing, trying to fight those things?”

“A warrior always attacks,” she answered, grabbing a wine jug. She pulled out the cork with her teeth and drank a big glug.

“We’re not warriors!” I snapped. “We’re flute girls. Don’t you get that? We have to be smart.”

“You say ‘smart,’” she scoffed. “You mean weak.”

“Have you ever seen an old flute girl?” I asked her. “No, there aren’t any. Most of us end up as graveyard women spreading for scraps. You only get through if you have a plan.”

“What’s yours?” she asked. “Hide in a storeroom?”

Alkibiades was a different challenge. Alkibiades is an aristocrat, and his driving motivation in my story (as in history) is that he feels he has never been shown the respect that his status entitles him to. Unlike with Mnestra, I leaned hard into the “stiff upper-class Brit” mode with him to convey that not only is he of a much higher social class than the flute girls but he’s also to an extent putting on an act of what he thinks an Athenian aristocrat should be like. If you can imagine a sinister version of Bertie Wooster, that’s what I heard in my head when writing his lines. Here’s how he intervenes when some potential clients are threatening to get violent with Mnestra and Lampedo.

But before anything could happen, a man on horseback came riding up and waved the twits back.

“I say, is that any way for an Athenian to behave?” he rebuked them. “Tussling with girls in the street? Don’t you know there’s a war on?”

Later, at his dinner party, Alkibiades tries to reassert his status after having his political position usurped by his rival Nikias. He starts a philosophical dialogue but is undermined by his own guests:

“Friends,” Alkibiades began, “let us make this a festival of the mind, not only of the body.” A couple of men near us snickered, but Alkibiades pretended not to notice. “Let me propose a subject for our discourse. What is the measure of a man’s worth?”

“The length of his cock!” a drunken voice called out.

“The quality of his wine!” another added before the laughter had faded.

“His virtue,” proposed an old white-head. A few other suggestions floated around the room. When the merriment had subsided a little, Alkibiades offered his own answer.

“I should say that the measure of a man’s worth is the greatness of the challenges he has overcome. The greatest of all men I name Leonidas of Sparta who faced the Persians at Thermopylai. When the Persian king demanded that the Spartans lay down their arms, he answered: ‘Come and take them.’”

“Then they all died and the Persians burned Athens,” someone objected. Alkibiades was undeterred.

“What more can a man ask for than to face an unbeatable foe with unwavering courage?”

“Sending Nikias out to do it!” came an answer. Alkibiades’s face went red and he sat down as the rest of the room exploded with laughter.

I have a great admiration for people who can write rich, fluid dialogue that drips with character. That’s not where my strengths lie. This is the stupid trick I use instead, and it works for me.

How It Happens is an occasional feature looking at the inner workings of various creative efforts.